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INTRODUCTION

The backbone of ballistics has been the spin stabilized projectile.
Virtually, all ordnance from small arms to artillery has almost
exclusively utilized the spin stabilized projectile over the last century.

»

Its predecessor was the cannonball and spherical shot. Just as the
elongated spin stabilized projectile yielded a marked improvement over
the less efficient cannonball, so also fin stabilized ammunition offers
great aeroballistic improvements over the spin stabilized projectile. It
has only been in recent years that the fin stabilized projectile has come
under serious consideration. Some success was achieved by the Cermans
during World War II with Naval projectile artillery. During the Korean
War fin stabilized anti-tank ammunition was introduced which improved
the effectiveness of the shape change because of its low spin, In recent
years the accuracy of fin stabilized projectiles has iinproved due to the
application of the Tricyclic Theory, the use of dynamic supersonic wind
tunnel tests, and improved launching techniques. Because of their small
size and the desire for very inexpensive manufacture, the flechette has
not received the careful attenticn that it requires to achieve high accuracy.
It is essential that manufacturing teclniques, saboting techniques, launch-
ing techniques, blast suppression techniques, optimized aeroballistic
design procedures, dynamic wind tunnel tests, accuracy theory studies,
computer analysis, and precision firings all be undertaken and optimized

to achieve good flechette accuracy and low dispersion.
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The purpose of this study is to explore flechette design and
performance with a view towards achieving high accuracy and low
dispersion. Specifically, exploratory firing programs were carried out
by Frankford Arsenal, by the Ballistics LLaboratories and by the
University of Notre Dame, Thé results of the Notre Dame Flechette
Firing Program are summarized in Appendix A.

A dynamic wind tunnel testing program was also carried out by
the university on various flechette designs so as to determine the
essential static and dynamic aeroballistic stability coefficients., The
results of this dynamic wind tunnel program are summarized in Appendix B.

i particular importance is the development of a computer theory
for flechette flight performance, accuracy and dispersion, This theory
together with an extensive computer analysis is given in Appendix C.
| Finally, tlechette firi~os were carried out in the precision range at
Frankford Arsenal and a correlation of theory and experiment is also
provided in Appendix C. along with a physical evaluation of dispersicon.

L

Based on the theory, sabot design and lar cher changes were made

in order to reduce the values of those parameters which affect dispersion.
' A second series of firings were conducted and the analysis of the results

is provided in Apnendix D.
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‘ Exploratory Flechettz Firing Program
The exploratory flechette firing program both at Frankford

Arsenal and at the university have provided an opportunity to measure

flechette spin, to measure flechette accuracy and dispersion, to
identify fin damage and body damage due to stripper, to provide an
approximate measure of dynamic stability at long range, to provide

a first hand appreciation of the strong blast region and to concentrate f

on sabot design, separation, and transition all as affecting flechette

flight performance and accuracy.

In addition a transition ballistic range was set up and optimized

at Frankford Arsenal to obtain initial condition data using flash x-

ray photography. A complete description of the set-up is provided in

Appendix C.
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BRL conducted free flight tests in their transonic Spark Range i

to obtain aerodynamic data on the various flechettes under consideration. 4
These data were used in the preliminary development of the dispersion ;1
!

theory and are compared with the wind tunnel results in Appendix B.
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Dynamic Supersonic Wind Tunnel Tests of
Four Flechette Configurations

“ In order to obtain both static and dynamic wind tunnel data on

] At S o . Ml _ b . 300 St i~ tls it

flechette configurations, special tests were carried out at the
University of Notre Dame which urilizes its unique vertical down flow
supersonic wind tunnel and utilizes its one-degree-of-freedom pitching
x dynamic support instrumentation., Four flechette configurations were
constructed and tested. The data from these dynamic tests was
measured on a photo-comparator and reduced and fitted by using the
Wobble program. The Notre Dame data on CM, and CMq+ CM& is

in good agreement with the data obtained by the Ballistic Research

Laboratory at small angles of attack and small mach numbers. At
/ the larger angles of attack, the Notre Dame data is as much as four
times larger as the BRL data in damping ind as much as two times

! larger than the CMoz data. Thus, the nonlinearities which have been

uncovered in the dynamic wind tunnel tests are of considerable
f importance in evaluating flechette flight performance and in evaluating

flechette accuracy and dispersion. No wind tunnel data was obtained on

the important Magnus moment. This omission is considered extremely

serious and it is recommended that future studies be carried out in
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this area. It is also recommmended that the aerodynamic characteristics
of the ditferent flechette designs be evaluated with a view towards
improvement in performance and accuracy.

Preliminary tests were carried out in obtaining the rolling
miotion of flechettes at the various angles of attack and in obtaining
three-degrees-of-freedem wind tunnel tests where models were able
to freely pitch, yaw, and roll. The exploratory rolling tests were
carried out in the supersonic wind tunnel at Picatinny Arsenal. Good
success was obtained on the basic configuration at small angles of
attack. At the large angles of attack the sting support mechanism bent
and thus had to be redesigned. These rolling tests have demonstrated
that it will be quite possible to obtain excellent free rolling motion
performance of flechettes at small and large anfles of attack using
instrumentation at Picatinny Arsenal.

’Fhree~degree-of~freedom dyramic wind tunnel tests were
explored in a preliminary way in the Notre [Dame vertical down super-
sonic wind tunnel. In these tests the model was able to freely pitch

and yaw and the afterbody with fins was able to roll freely. The fore-

body however did not roll The tests were of marginal success but
suggested that complete success could be achieved with more effort,

It is specifically suggested that the new 3-D testing procedures originally
explored at Notre Dame be continued in the Picatinny Arsenal and/or

the BRL wind tunnels.




It should be emphasized that the nonlinear aeroballistic dynamic
stability coefficients obtained in the Notre Dame progiram represent a
major finding which was extensively utilized in the performance analysis
and accuracy computations. It is considered essential that all future

flechette designs undergo cornplete dynamic wind tunnel testing and

e el

range firings in order to permit accurate computations of the true
dynamic flight performance, accuracy and dispersion of flechettes.
Dispersion Theory of High Fineness Ratio,
Cruciform Fin Bodies
A complete jump and dispersion theory is setforth for the free
flight performance of flechettes. The six-degree-of-freedom equations
of motion are coded for various computer computations which indicared
that the flechette accuracy theory accurately predicts the jump and
‘ (
| dispersion of flechettes.
In order to determine realistic values for the initial conditions of
flight and for the actual dispersion of flechettes, test firings are carried

out in order to obtain special experimental data. The raw experimental

, data is fitted by the least squares method and thereby placed into the

i form of initial flight conditions. These initial conditions are then !

applied to the thcory. Six-degree-of-freedom numerical computations
are used to evaluate the dispersion of eight test rounds. The good agree-

ment between the theory and test firing results indicate that the methods _'

of data analysis and the flechette accuracy theory together provide a

precise means of predicting the dispersion of flechertes.
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The analysis of the firing data indicates that the large initial
conditions of flechette flight result from a strong impulse imparted to
the flechette in the muzzle blast regime. It is found that if the transverse
impulse imparted to the flechette is equal to an opposite angular impulse
then the dispersion will be zero. Since these two impulses rarely balance
and always exist, flechette dispersion is generally large. However, by
controlling sabot design and muzzle blast, the transverse and angular
momentums can be reduced and partially balanced thereby yielding
excellent accuracy and low dispersion.

Of particular importance is the invalidation of the classical
maximum yaw theory long used in exterior ballistics.

More specifically the complete jump and dispersion theory for
flechettes has been reduced to three governing equations which represent
flechettes having high, low and very low roll rates. These three theories
were found to be accurate by evaluation against six~degree-of~-freedom,
numerical computations of the equations of motion. It was found there-
fore that they accurately predict the jump and dispe‘rsion of flechettes.

The computer program undertaken to evaluate the flechette accuracy
theory includes 201 special case runs carried out in four parts.The first
part validates the theory with respect to the aerodynamic restoring and
damping moments. The effect of these moments on dispersion was found
to depend on the initial conditions.

The second part validated the theory with respect to the aerodynamic

Magnus force and moment. The effects on dispersion were found to be

-




very small and of no consequence unless the total dispersion of a

particular round was of the same order of magnitude as a Magnus
effect,

“ The thira part validated the theory with respect to aerodynamic
asymmetries (mass asymmetry, inertia asymmetry, etc.) and roll
rate. All three theories were found to be validated in this phase and ]
found to be quite accurate. Aerodynamic asymmetries causing a trim
of 1° have little effect on the dispersion of fast rolling flechettes.,
Slower rolling flechettes were found to have in general increasingly
large dispersion values as the roll rate decreased. It can be concluded
that for flights which are prone to aerodynamic asymmetry and fin
damage, a high roll rate is essential to low dispersion and increased
accuracy.

The fourth part validates the thecry with respect to gravity. The
theory indicates a lateral contribution to dispersion from gravity in

addition to the vertical contribution. However, for the flechette this

i

lateral contribution was found to be minimums. i
In general, the agreement between the flechette accuracy theory
and the computer computations viere cxcellent and account for the effect

of the initial launching conditions as well as the static and dynamic

stability coefficients and asymmetries. IFurther, simple equations are

given in order to achieve the desired accuracy and optimization. i
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SUMMARY

By an exploratory firing program, by a supersonic dynamic wind
tuhnel testing program, by the development of an accuracy theory for
jump and dispersion, by computer computations and analys!s, and by
precision range firings at Frankford Arsenal, flechette accuracy and
dispersion is explained, evaluated and impreved.

The firing program revealed the importance of fin and body damage,
the blast region and saboting. The dynamic wind tunnel program yieided
values for the important static and dynamic stability coefficients. The
flechette accuracy theory was confirmed by numerical integration of the
6-D equations on the high speed computer where the effects of initial
conditions, stability coefficients and asymmetries was revealed and
evaluated. Finally, by a flechette firing program in the new [Frankford
Arsenal Ballistics Range, excellent correlation between theory and

experiment for flechette accuracy was obtained.
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APPENDIX A

EXPLORATORY FLECHETTE FIRING PROGRAM

Two flechette firing programs were carried out at the University
of Notre Dame. The first program was carried out in the Armiy Firing
Range located under the football stands in the Rockne Stadium, In these
first firing tests the actual flechette and its sabot were fired at full
hypersonic velocity using a mann barrel with sabot stripper. The firings
were carried out with the assistance of technical personnel from Frankford
Arsenal and under the direct supervision of Army ROTC personnel
stationed on the campus and responsible for the Firing Range. These
firings revealed two very important discoveries. By firing through light
drawing paper yaw cards and by examining the impression left by the
passage of the flechette, it was possible to obtain a positive confirmation
that the fins were being seriously damaged and/or bent by the stripper.
This finding was transmitted to the cognizant Frankford Arsenal personnel
where suitable corrective changes were initiated and finalized thereby
climinat.ng the problem of fin damage.

The sccond major finding of the first flechette firing program, insofar
as university investigators were concerned, was the recognition of the
tremendously intensive and long muzzle blast regime. While a standard 22

projectile is fired in the range with little noise and little blast, the flechette

system of basically the same weight but fired at large velocity yields a
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tremendous concussion and a tongue of fire, blast and flame stretching;
some 3-4 feet. . The importance of the recognition of the strong blast F
region lies in its effect in disturbing the flechette at launch and thereby
contributing to inaccuracy. !
The first firing program therefore revealed fin damage due to 1
sabot strippers and a large blast re-gion which contributed to jump and
inaccuracy.
' The second flechette firing program carried out at the university J
utilized an air gun in simple subsonic launchings. The range setup is :

shown in Figure 1. The purpose of this special firing setup was to explore

it i

various saboting techniques. In this program sabots of both pusher design
and puller designs were investigated. Also body inset sabot designs were studied,
see Figure 2. Representative targert data is illustrated in Figure 3 where

! effects of sabot designs are clearly cviden;. Various flechette and sabot 4

designs are shown in Figures 4 and 3.
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APPENDIX B

DYNAMIC SUPERSONIC WIND TUNNEL TESTS OF
FOUR-FLECHETTE CONFIGURATIONS

DYNAMIC SUPERSONIC WIND TUNNEL TESTING*

ABSTRACT

The linear values of the static pitching moment stability coefficient,
CM e @nd the damping moment stability coefficient, CMq+ CMc'r’
are determined versus angle ot attack for four flechette designs. The
program is carried out in a vertical supersonic wind tunnel using a
one-~degree-of-freedom dynamic testing technique. This method allows
the model to go through free onc-degree-of-freedom angular oscillations.
] Stability parameters are extracted from a film rccord of this motion
: and the stability coefficients are computed using the WOBBLE computer

program. Good repeatabilitv ¢f the results is shown for low angle of

attack.

*Prepared by Michael Garsik.
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R Gas constant

S Reference area, S = ~7T4—d“' (ftz)

t Time (sec)

T, Total temperature °R

U Total velocity (ft/sec)

X,Y,Z Aeroballistic axes
X,¥,2Z Space-fixed axes
o Angle of attack (rad)

B Angle of sideslip (rad)

6,¢,¢ [Fuler angles (rad or deg)

P Air density (slugs/ft3) '
)‘1,2 Damping rate (rad/sec)
wI,Z Nutation and precession frequency (rad/sec)
| Y Ratio of specific heats, -(-i-p—
“v
, & Phase angle (rad)
24
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‘ INTRODUCTION

With the advent of more advanced analysis techniquesl today's
aerodynamicist has the power to achieve a better understanding of the
free flight performance of a flight vehicle. Data such as angular motion,
jump angle and dispersion can now be extracted from free flight data and
studied? so that previously undetected instabilities and design failures
can be corrected. Obviously from this there arises a clear need for
development of free flight simulations. 3,4 The random method used in
trying to solve the problems of stability and flight performance would

prove dangerous and costly if full scale flight tests were conducted. It

would be much cheaper and safer to experiment with new desigis on
models of the actual configuration. This presents the problems of simu-

lating frec flight motions so that data can be extracted and the ncw designs

e Y g e v o e AT R g i e R G S S

| evaluated just as if the test were conducted cn a full scale model in free
flight.

Ballistic range firings was one of rhe initial attempts at a flight
y simulation technique. It involved taking photographs at various stations
! along a firing range of a model that had been launched from a gun. Be-
cause of the limitatit;ns on the types of motion that could be observed,
the lack of control of initial conditions, and other limiting factors, it
soon became apparent that a more scphisticated method of simulation was
necessary. Attention was turned to the wind tunnel.

Arremipts to study the angular motions of flight vehicles in the wind

25
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tunnel began by mechanically reproducing them. This technique ran into
several problems, in particular separating the driving mechanism
response from the aerodynamic response and the fact that the technique

is limited in that a mechanical response, rather then a free one, to the
flow field is used. In recent years the most successful wind tunnel simu-
lation technique, dynamic wind tunnel testing, has been developed.
Actually there are several types of dynamic wind tunnel testing. The free
flight angular oscillation inethod exhibits complete six-degree-of-freedom
metion and needs no external support system, however certain limitations
to this technique do exiscs., The duration of the simulation is restrictive
hence length of the "flight" is very short. Also, a lack of control of initial
conditions prohibits the study of particular flight modes. Another method,
that of constrained angular oscillations, eliminates these disadvantages

at the expense of introducing new ones. The most predominate disadvant-
age is the interference effects of the support system on the response of

the model to tllQ,fl{)w field. This assumes that the problem of building an

adequate support system can be solved. It is important to have control
over the initial conditions and the length of the simulation run in order to
simulate the frece flight angular motions in the wind tunnel. Of course, the
choice of which method to use depends on the careful consideration of the
problem at hand and the expcerimental limitations which could be allowed
and not interfere with the test being u’:arricd out,

With regard to the constrained angular oscillation technique and

its use in the superso ‘c wind tunnel, several mcethods have been
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developed. The gas bzaring system is onc that is ideally suited to the
study of low fineness ratio, non-finned bodies such as projectiles. It
does not lend itself to the study of high fineness ratio finned bodies quite
as well. One of the drawbacks of this technique is the high cost of
construction and maintenance of the system. The jewel bearing support
system has been utilized in supersonic wind tunnel testing to observe the
rolling motion of various models of flight vehicles. Such a system has
been successfully employed in determining the roll damping moment and
induced roll momenr stability coefficients for differcnt flight contigura-
tions.

This investigation is intended to determine the lincar pitching mo-
ment and damping moment stability coefficients of four flechette configu-
rations in a supersonic regime. The study was conducted under a
contract awarded to the Department of Acrospace and Mcechanical
Engineering af the University of Notre Dame by Frankford Arsenal,
Philadelphia, Pa. Thc contract deals with a .:tudy of the jump angle and
dispersion of the flechette configurations. An underlying intent will be to
document the coustrained angular osciliation technique used in the
supersonic wind tunnel tests,

In order to study the performance of the flechette configurations
and to be able to predict their fliiht path, a basic understanding of the
stability of the rounds must be obtaine I, Adequate stability prediction
requires that techniques of flight simulation be used which will produce

continuous results for supersonic conditions.
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The actual steps taken in developing such a program of Jdynamic
wind tunnel tests were: 1) adapting the one-degree-of-freedom free
oscillation technique to the supersonic wind tunnel; 2) recording the one
degree of freedom angular oscillations of the models in the supersonic
winrd tunnel by high speed photography techniques; 3) reducing the motion
of the models to numerical values of angle of attack; 4) fitting the Aero-
ballistic Theory to the angular data obtained to determine the stability
paranieters KN,P , AN,P’ c.uN"F,;S.’6 S) computing the acrodynamic
stability coefficients from Linear Theory using the stability parameters,
model parameters, wind tunnel Mach number and density; 6) analyzing
the interference of the support system by checking the repeatability of
results,

To accomplish the goals set down a unique method of supporting
the pure pitch flechette models are utilized.7 It involved suspending the
model in the test section of the University of Notrc Dame's vertical
supersonic wind tuunel and allowing it to go through free one-degree-of-
freedom oscillations. The low friction in the system allowed continuous
motions to be obtained and recorded and the stability coefficients to be

extracted from the angular data.
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AEROBALLISTIC THEORY

Axis Systems

Two basic axis systems are used. The space fixed axis system
(Figure 1) is the system in which the data is recorded. The aeroballistic
axis gystem (I'igure 2) is the system in which the equations of motion
are expressed. By choosing the x-aXis of the space fixed system to
coincide with the velocity vector the data is made directly compatible
to the equations of motion, From Figures 1 and 2 it is seen that 6=«
and = 6. Care must be taken in extending thiz comparison beyond this

point.
¢
The lincar theory for a missile constrained at its center of gravity

for one-degree-of-freedom pure pitching is as follows.

Linear Theory
In the development of the Linear Thcory several assumptions are
made: |
1. Aerodynamic coefficients are constant
2. Velocity and density are constant
3. All angular motions except roll are small enough that the
small angle approximations may be used:
sinx = tanx = X
cosx =1
4, 'T'he missile has mirror symmearry and trigonal or greater

rotaticnal symmetry.
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The fundamental differential equation of motion for the rotational
motion is
M= 18 (1)
The sum of the acting aerodynamic moments, shown in Figure 3, which

are assumed to vary linearly with angle of attack is

M = Maa + qu + M&a + Mafe 2)
where
. 1
M, = cMa <> pUZSd
M_ = Cy _d_] 1 ,u%sd
9 q| 2u 2

(3)

M. = Cve L o U2 sd
5, = My 5 P

Because of the selection of the particular axis systems and their

orientation, Equation 1 can be rewritten as .
M=1& (4)

Equation 2 can be rewriticn as

M=M o+ Mq+M& &+M666€ (5)

Combining Equations 4 and 5 and rearranging

.o M +Mv~ M
G- g 5| _2la =My (6)
€
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a+ Nla +N2(x =N3 (7)
where
SENLSLY
' -
N, = - M“]
2 LT (8)

M, 6
6 €
N3= [G

Solving for the homogeneous solution to Equation 7 assume a

solution of the form
a=Ke Pt (9)

Differentiation of this yields
& = ¢ Ke®t &= Ke®t (10)
Substitute Equation 9 and 10 into the homogeneous form of

Equation 7

¢2 Ke®t + N1¢e¢f +N26¢t=0

¢2+Nl (jJ+N2= 0

which has a solution of the form

N P
= - 1 1 , 2

For missiles in air the assumption that the products of stability

2
derivatives are negligible when compared to themselves (i.e. Nl<<N2)
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can be made. This is generally a good assumption and will be made

here. Hence Equation 11 can be written

N
= =~ 1 i
) — + 14Ny

: (12)
; =r2t e
f The homogencous solution has the form
A p+iwgh (A, - lwght
| a=Ke +K.e (13)
; 1 2
" where
A, = Aa,-4d | L 2 Mg+ CMg 14
17 Mgy | g o UTSd = (14)
\ 1 2
! Cm u*sd] Y2
h 2 1:( a 2P (15)
=' L I N
i
] l- 3 -
! [Cnmg 7 0 U sa] V2
: (.02:~ (]_())
L |
} - and
‘/ 2
i ~ 21w
(W x - (19
3 M -~ ""'_"_ .2'- \t/y
: @ pU%sd
‘ +Cpp o) = SIA 18
: Omg* M, = S5 (18)

Solving for the particular part of the solution of Equation 7 con-

sider the steady state case of no pitching, Equation 7 would be




|
é N =
, g @ N3 |
Ny Mg, (19)
2 a i
This is the particular part of the solution of Equation 7. The complete i
solution is | '1
A +iwt (g +iwg)t !
o= Kle + Kye + Kq (20) ;

where Kl and K2 are found from initial conditions and are

. L ¥ -6y 0, ¢y Ky
Ky = 2 R L — (21)
1,2 = -
’ P1-2 7 %y 4 (¢1,2 2,1y

Since the magnitudes of ¢, and (pz arc always equal and Kq is constant
I K, = KZ = K
Since _ .

i iwt:

e cos wt + isinwt

P,

| Equation 19 can be written as

At
{ . a = 2Ke'  coswt + K.:i

i,

—

S e i L

or in a more general form

At
o= Koe cos (Wt+6) + K3 (22)

where

|
|
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Equation 22 is the basic modal which will be used to fit the one-
degree-of-freedom data. A physical representation of what Equation 22
means and how it reduces the Tricyclic Theory to a pure pitching motion

case is shown in Figure 4. The two arms KI and K, have been replaced

2
by“a single arm of length K where K=K1+K2. This arm is rotating at a

rate w=w; and has an initial orientation of 6 =6 1 The cosine function
projects this arm onto the vertical axis of the aeroballistic axis system

to give values of 8. This "projection” follows the pure pitch’ag of the

model as if it would look when observed from the rear,

Computation of Aerodynamic Stability Coefficients
To fit Equation 22 to the angular oscillation data the WOBBLE
computer program was used. This program fits the theory to short
segments of the data in overlapping picces so that the stability para-

w, and K

meters /\1, 1 p are determined as functions of time,

Computation of Linear Coefficients ‘

Using the velocity and model parameters (Appendix A) along with
)\1, w; and Kl the pitching moment stability cocfficient, Cyy , and the
damping moment stability coefficient, ((:Mq+ CM& ), werc computed.
Eqg.ations 17 and 18 were used to compute these coefficients as functions

of time.
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Experimental Technique

Four different configurations were tested, the Ground Point, Olin,
Swaged Point, and Tracer. Schematic representations of the model

configurations are given in Figures 5, 6, 7, and 8 respectively.

One-Degree-of-Freedom Wind Tunnel Test Procedures

All of the tests were carried out in the University of Notre Dame's
vertical supersonic wind tunnel shown in Figure 9. This wind tunnel
features a vertical test section fitted with interchangeable steel and
glass walls. A steel wall was used on one side to give maximum support
to the model support system and a glass wall was used on the other side
to allow observation of the models. The basic idea behind the support
system is shown in Figures 10, 11, 12 and 12a.

To mount the model in the tunnel the following system was used.
A length of piano wire 0.030" in diameter wag inscrted through the hole
in the glass wall and into a syringe tube. The purpose of the two syringe
tubes, one on each side of the model, wag to insure that the model would
remain in the center of the wind tunnel test section after it was released
and allowed to oscillate. After running the wire through the first syringe
tube, it was pushed through a small hole 0.040" in diameter drilled per-
pendicular to the longitudinal axis at the center of gravity of the model.
The wire was then pushed through the second syringe tube and guided out
of the test section through a hole in the steel wall. The wire was secured
outside the wind tunnel test section by a system shown in Figure 11, On
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Figure 9. Vertical Supersonic Wind Tunnel
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Figure 6. Supersonic Wind Tunnel Model
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the glass wall side the wire was put through a hole in a flat washer
placed flush against the glass wall. The hole in the washer had a dia-
meter closer in size to the diameter of the wire then the hole in the glass
wall. This cut down on the disturbance of the flow caused by the pre-
sence of the hole in the wall of the test section. Next, the wire was
secured by placing it through an Allen screw tube and a solder washer.
An‘Allen screw tube is a long cylinder with a small diameter hole drilied
along its longitudinal axis and three small holes drilled perpendicular to
the axis. These holes have been tapped to accommodate Allen screws
which can be tightened to clamp down on the piano wire and hold it in
place. A solder washer is a short cylinder containing two small dia-
meter holes, one at the center and onc near the'outer edge. After running
the wire through the center hole it can be bent around into the second
hole at the outer cdge. This hole also has a smatll hole drilled perpen-
dicular to it and tapped to hold an Allen screw. As in the Allen screw
tube, this Allen screw can be tightencd down on the support wire to
securc it. This system holds the support wire on thc‘ glass wall side of
the test section.

After running the wire ithirough the steel wall side it was pushed
through a flat washer identical to the one on the glass wall side. A
tightening tube was placed next in position and the wire was guided
through it. A tightcning tube is two concentric cylinders which are
matched by threading. The length of the tube can be adjusted to the

desived size by rotating the outer tube about the inner one. Finally, the
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piano wirc was secured- using an Allen screw tube and a soldier washer.
This completed the setting up of the support system. One advantage not
already mentioned comes to light at this point. The models could be
easily removed and inserted into the test section of the wind tunnel,

. After the support system was in place the tension in the wire was
adjusted by changing the length of the tightening tube. The tension was
set so that the model would not change its vertical position after the
tunne! was turned on. The model was then rotated 180° and held in place
by a retaining mechanism shown in Figure 13. This system consisted of
an cxtendable retainer which was placed around the ‘nose of the model to
secure it at its initial angle of attack. The retainer was connected to a
release wire which could be manually operated from outside the tunnel.
Whern the release wire was pulled the retainer would slip off the nose of
the model and the model would be frec to oscillate.

To record the oscillations of the model a Wollensak Fastex high
speed motion picture camera was used. The camera was set-up as shown
in Figure 14 on the glass wall side of the test scction‘. Two floodlights,
one just above the camera position and one above the inlet of the wind
tunnel, were used to provide maximuin lighting of the mode! in the test
section. The carnera was operated at a speed of 3000 frames per second
for threc seconds with a lens opening of £5. 6.

Upon completing all preparations the tunnel was started following
the procedure in Appendix B. The retainer was pulled back and the

subsequent angular motion of the model was recorded.
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One-Degree-of- Freedorﬁ Data Reduction Procedure

The one-degree-of-frecdom oscillations were converted to
numerical values of angle of attack in the following manner. Two
rcference dots at a known distance apart had been placed on the steel
wall in the test scction behind the model. These dots were included in
each frame of the film record of the angular motions of the model. The
dots were placed such that a horizontal linc running between them was
above the highest peint that the model with the largest radius would
reach. For each configuration the radius of oscillation, the distance
from the pivot point to the nose of the model, was also known. The re-
lative coordinates of the reference dots and the nose of the model were

determined from the data film using an optical comparator shown in

Figurc 153. A computer program called REDUCE, presented in Appendix

C, using these coordinates and the known conversion distance between
the reference dots was then employed to produce a time history of the
angular oscillations of the model. A schematic of the reduction coordi-

nates is presented in Figure 16,

Velocity Determination Technique

Since all the tests were not conducted on the same day it was
necessary to determine the velocity in the wind tunnel on the particular
day the test was conducted. A method of measuring the static pressure
in the test section was necessary to do this. A system like the one in

Figure 17 was used to do this
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A long thin tube was placed in the inlet of the wind tunnel and
lowered until the end reached the support strut just below the test
section. This cnd of the tube wés secured to the strut to help maintain
the position of the tube near the center of the wind tunnel test section.

A small hole had been drilled in the side of the tube te coincide with

the position of the model when the tube was in place. The end of the tube
in the tunnel was sealed and the open end was connccted to a manometer
by a length of plastic tubing. This upper end was fastened so as to put
tension on the tube and prevent it from moving about in the teut section
when the pressure measurement was being taken. Any movement of the
tube would affect the pressure reading and produce an incorrect value
of the velocity.

Before starting the tunnel a tare reading was imade on the mano-
meter and the stagnation or total pressurc was taken from. a barometer,
Since the manometer scale did not coincide wiih that of the barometer
the tare reading and barometer reading, which should have been equal
had their scales coincided, were different. This diffc.?rence was a
correction factor which would have to be added to the pressure reading
taken when the tunnel was on to give the actual static pressure, The
tunnel was turned on and the pressure was recorded. Ilaving ail of these
pressure readings the ratio of static to total pressure could be solvedv

for using the following formula:

r Pread * (Pt - Prare)
P A




-—'r"-" S T T o A . e e e - - .- - - 1
i
3
AT A Do 7 kb v g par os e atan -Z
.3 1
¥ ‘
i L.
¥ .
: where 4
. .‘
: (P, -P ) = corrcction factor - _—
: i t tare g
j ; !
| N Once this ratio was known the Mach anumber could be found in the j
Isentropic Flow Tables of Reference 8. For ihe REDUCE computer
i
i : program it was necessary to put the velocity in units of feet per second
f from the Mach number. A sample calcularion of this is shown in Appendix 3
o |
i Do “j
! ’ ;
i :
S |
. '3
| i:
- |
. ;
‘ |
i B
: i
: ;
j |
i ‘ :
i i
; 4
4
’
!
{
!
.‘l L T et S et et~ s rrege e o 4.......‘..........._.,.‘15

F APV srn iy v i peoe v ves
.
-

,
=~}

| é
|




ONE-DEGREE-OF-FREEDOM TEST RESULTS
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Sue—pPegree-cf-Frecedom Data Reduction

The WOBBLE computer program was used to fit the Aeroballistic
Theory to the one-degrec -of-freedom angular data obtained from the
REDUCE program. The data was fitted in segments of 1.8 cycles and
the stability parameters Kl’ KT’ Al’ and w, were determined by
WOBBLE at a time interval of 0.03 seconds. The stability parameter
K » the trim arm, is analogous to the K4 in the Linear Theory and is
due to aerodynamic asyminetries in the configurations. The average
pexcent error of the fitting of the theory to the data for all the tests
carried was less then 3. A representative plot of probable error (PLE.)
versus time is given in Figure 18. The stability parameters were ob-
tained from the fits as functions of time. Plots of the stability para-
meters versus time for all the configurations are presented in Figures

19 through 34.

One-Degree-of-Freedom Stability Coefficients

The pitching moment and damping moment stability coefficicuts,
CMa and (CMq+CM d) ,were obtained versus time from the WOBBLLE
fits. Plots of the mean valucs of the cocefficients per fit versus mean
angle of attack per fit are presented in Figures 35 through 42 for all the
configurations. These plots given an approximation of how the coeffi-
cicnts vary with angle of attack. Included on these graphs are Ballistic
Range La! oratory (BRL) results for the respective configurations and
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coefficients. The BRI. data was plotted at an angle of atrack of 2°,
Figures 43 through 50 are plots of BRL results for the stability coeffi-
cients versus Mach number for all the configurations, Mean values of
the Notre Dame results for the coefficients at low angles of attack are
included on these graphs. The Notre Dame data was plotted at a Mach
number of 1.3 which was an average value of all the tests carried out,
An important point which should be brought up at this point is the
discrepancy in the definition of the damping momenr stability coefficient
between the two scts of results. The computations in this investigation
were carried out using a factor of ( .,Czl.‘.l ) in the definition of the damping
moment stability coefficient (see Equation 3). The PBRL definition used
a fuctor of (%_) causing the respective computed values of (CMq+CMd)
to be off by a factor of two. To account for this and allow the results to
be directly compared, the BRI, values of (CMq+ Cm ('v) were increased
by a factor 2 betore plotting, This essentially gave all the velues pre-
sented a uniform definition and allowed the comparisons of the results

to be made.,
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CONCLUSIONS

Single-degree -vi-freedom dynamic supersonic wind tunnel tests of
four flechette configurations has been presented. Linear values of CMa

and (Cy_+ Cp ») Were determined from stability parameters acquired
Mq Mg P q

from the data taken during the tests. These values of CMc'x and

Cm +CM& showed good repeatability and were compared to results from
the Ballistics Range Laboratory (BRL) for the same designs at low angles
of attack. Over the range of comparison the agreement between the two sets
of data was shown to be quite good.

The vepeatability of the results was a good indication of the absence
of frictional effects and interference cffects to the flow which might have
been caused by the support system. In Reference 7 it was shown that this
excellent one-degree-of-freedom dynamic testing technique can be easily
extended to include the determination of nonlinear values of the static
pitching and damping stability coetficients, Also, because the model is

suspended at its center of gravity, there is no reason why this technique

could not be moved into a horizontal supersonic wiud tunnel if necesgsary.
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APPENDIX A

MODEL PARAMETERS

Grount Point

Diameter = .012 ft.

. I = .000004647 slugs-ft2
Mass = .0003647 slugs
Radius = 1.69 in.

Olin
Diameter = ,0119 ft.
Mass = . 000303 slugs
I, = .000007040 slug-ft2
l{adius = 1,52 in,
Tracer

Diameter = ,01533 ft.

Mass = .0004520 slugs

I, = .0000105570 slugs-fr®
Radius = 2,11 in,

Swaged Point

Diameter = .012 ft
Mass = .0003933 slugs
I, = .000006041 siugs-fc?
Radiug = 1.69 in.
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APPENDIX B -

4
b M L

SUPERSONIC WIND TUNNEL OPERATING PROCEDURE

Starting Procedure
1. Open valve to compressor manifold for wind tunnel to be used -

make sure that the other wind tunnels are either shut off or blocked from

JRERNPRIPIEEY . SN SRR - CGRE T W A P

the manifold.
! ' 2. Inform University Power Plant of intention to run compressors. i
3, Turn cooling water on (one valve near wall inside laboratory).
4. Turn each compressor shaft to make sure they are free to
rotate,
5. Check oil level for cach compressor (oil level should be above
gear).
6. Check oil pump for cach compressor i.e. depress six plungers

and observe oil bubbies.,

7. Add a few squirrs of No. 51 o1l to hole in top of shaft bushing.

8. Check mercury manometer tubing in compressor room to make

sure it is connected.

9. Turn master power switch on for cach compressor.

10. Start onc compressor - allow at least one minute after com-
pressor comes up to speed before starting the second compressor and
allow another one minute after this compressor comes up to speed before
starting third compressor, r

11.. If mercury manometetr rcads more than 18 inches, Shut Down

Immediately,
96
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Shut Down Procedure

1,
2,
3.
4,

shut off.

Shut compressors off one at a tim

Turn master power switch off for each compressor.

Shut compressor cooling water off.

Inform University Power Plant that COmpressors have heen

97
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APPENDIX C
ONE-DEGREE-OF-FREEDOM TEST RESULTS
ON R&D FLECHETTES
The model* was initially disturbed to an angle of attack of approxi-
mately 180° and then allowed to oscillate freely. The resulting angular

r

motions were then recorded by a high speed camera technique,

One-Degree -of-lreedom Data Reduction

The "Wobble" computer program was used to fit the one-degree-of-
freedom Acroballistic Theory to the angular oscillations obtained from the
moving camera technique. This data was firted in segments of 2.2 cycles
with each segment containing approximately 25 points. The stability para-
meters Kl’ KT’ hl, w,, were determined by the Wobble program at a time
interval of 0.015 seconds. The average percent error of the theory to the
data showed an error of less than 3%. A vepresentative plot of probable
error of fit vs time is shown in Fig. la.

The stability parameters were obtained from the fits as functions of
time, representative angular oscillations, probable errors of fit, and
stability parameters are presented in Figs. 2 through 6. The resulting

stability coefficieuts versus time are presented in Figs. 7 and 8.

One~Degree -of-Freedom Nonlinear Stability Coefficients

To get an indication of the nonlinearity of the stability coeffi:ients .

*Figure 1.
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| with angle of attack, the one-degree-of-freedom Noniinear Aeroballistic

" Theory was employed. Using this nonlinear theory, the stability coefficients
were determined as polynomial functions of the angle of attack. Repre-
sentative plots of runs made are presented in Figs. 9 and 10.

Both C,, ,» the pitching moment coefficient and Cmq +Chy the

damping moment coefficient were found to vary nonlinearly with angle of

‘ attack. Beth were found to be highly repeatable. C_, , varied no more

than 20, about its mean while Cmq + Cmc'! varied less than 5% about

its mean,
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APPENDIX C

DISPERSION THEORY OF HIGH FINENESS RATIO,
CRUCIFORM FIN BODIES *

A complete Jump and Dispersion Theory is developed for free
flight vehicles. Six-degree-of-freedom computer computations
indicates that the theory accurately predicts the jump and dispersion
of flechettes.

The initial conditions and dispersion values are established by
range test firings, The raw data is fitted by least squares method and
put into initial condition form. Initial conditions are applied to the
theory and 6-D numerical computations to evaluate dispersion for eight
test rounds. The results are compared to test firing target data, The
agreement between the theory and test results indicate the data analysis
and theory provide an accurate means of predicting dispersion of flechettes,
Analysis of the firing data indicates that the initial conditions result from
an impulse imparted to the flechette in the muzzle blast. The transverse
impulse imparted to the flechette initially must be cqual to the angular
impulse to obtain zero dispersion. Other disturbances in the blast region
such as sabot separation influence the initial conditions and hence

dispersion. First maximum yaw theory is discussed and disproved.

*Prepared by Tawrence E. Lijewski.
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